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NUMERICAL ANALYSIS OF CRACK DEVELOPMENT IN STRUCTURALLY 

NONUNIFORM COMPOSITES 

E. A. Lankina UDC 5 3 9 . 2  

The plane problem of an elastic unidirectional composite with a crack which grows from 
infinity at constant stress o is considered here. The y axis coincides with the direction of 
reinforcement. If the dimensions of the binder H and the fiber h are small compared with 
the length of the crack, the macroscopic field far from the crack can be determined by the 
methods of continuum mechanics on the basis of integral equations from potential theory. 
Solution of the macroscopic problem in this formulation gives infinite growth of the stress 
upon approach to the crack margins. In the neighborhood of the crack margin, a formulation 
that takes into account the characteristic dimension of the real structure of the materials is 
necessary. Therefore, it is useful to break the problem down into two stages. In the first, 
the stress in a structureless composite is determined, i.e., the limiting case of a "smeared" 
structure is studied, when h, H ~ 0, h/H = const. Then a region around the crack margins in 
selected, and the stress determined for the smeared composite is used as a boundary condi- 
tion on the boundary of this region. In the second stage, the interior of this region is 
described by equations that take into account the discrete structure of the composite, result- 
ing in finite stresses. In this case the crack and the boundary of the selected region are 
considered to be an aggregate of fiber fractures and delaminations of binder. By using the 
strength conditions for fracture or delamination, the development of a crack is calculated, 
and parameter values are found at which cracks grow by fracture of the fibers or by delamina- 
tion of the binder. 

i. We denote displacement of the i-th fiber along the direction of reinforcement y by 
ui(Y). Then the equation of equilibrium for the i-th fiber inside the composite is written 
as [17]. 

hH e2 u~ ~2 ( i .  i ) dg ~ + ( u i + ~ - - 2 u i + , ~ _ , )  = O. ~ = ~/E 

(~, E are the moduli of elasticity for the binder and the fiber). The normal stress in the 
fiber and that tangential to the binder are computed from 

a=~ 'q+1 - ,q ( 1 . 2 )  
ai = E"aT,, Ti = ~t H 
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We take the limit of a uniform continuous unidirectional medium, for which h, H tend toward 
zero in such a way that their ratio is held constant, or, what is the same thing, the rein- 
forcement coefficient h/(h + H) is preserved. Dividing the second central difference ui+ I - 
2u i + ui_ I in (i.i) by the square of the step-size in the horizontal coordinate (H + h) 2, 
we obtain the difference analog of the second derivative with respect to x. Multiplying (i.i) 
by the same and taking the limit, we have 

t 02u O'2u 
1" oz"- + ~ = O, 2" = hH/fF- (H + hfi. 

Taking the limit in the second formula of (1.2) gives 

(1.3) 

~ u ~ + h  ( 1 . 4 )  TxY ~ ~ Ox H 

The mean normal stress Oyy for a continuum is obtained from the first expression in (1.2) if 
we consider that the concentration of fibers in the composite is equal to h/(H + h): 

EOu h ( 1 . 5 )  

E x p r e s s i o n s  ( 1 . 4 )  and ( 1 . 5 )  can be c o n s i d e r e d  as H o o k e ' s  law f o r  a r e i n f o r c e d  medium. T h u s  
we represent Eq. (1.3) in the standard form for continuum mechanics: 

0 Txy -t- 0 0-7 ~ %u = O. 

The load is given with the help of the condition at infinity 

h Ou 
E H ..~ h Oy = a, y-+ oo. ( 1 . 6 )  

Let us derive the boundary condition at a crack with free margins. To do this, we construct 
the equilibrium equation for a small element which is formed by part of the crack ds and the 
projection of ds onto the coordinate axis (Fig. i). Since the margins of the crack are 
stress-free, the equilibrium equation for such an element in the direction of the y axis has 
the form 

~xyds cos (n. x) + s w d s  eo~ (n, g) = 0 

(n i s  t h e  normal  t o  t he  e l emen t  d s ) .  Using ( 1 . 4 )  and ( 1 . 5 ) ,  we o b t a i n  

H -b h Ou 
cos (n, ~) + E t,t 11 Ox h ~ cos(n, g) = O. 

H @ h Og 

We represent the elastic field as the sum of two fields: a uniform tensile stress o of the 
plane without the crack, and a stress field around the crack with loaded margins. The displace- 
ments corresponding to the second (supplementary) problem is also denoted by u. It isleasy 
to show that this displacement satisfies (1.3), the conditions at infinity (1.6) with a zero 
right-hand side, and the condition 

! cos (n, x) 9u 0u s ( 1 . 7 )  y ~Tx + cos(n,g) @ z cos(n,y)  

a t  b o t h  c r a c k  m a r g i n s .  

2. To solve problem (1.3), (1.7), we apply the methods of integral equations. If we 
carry out a substitution of the variable x, we arrive at Laplace's equation, while (1.7) is 
transformed into a derivative along the normal. On the basis of established properties of 
the harmonic potential for a double layer [2], it can be shown that the displacement 

1 I'~ (z--~)n1($)+(Y--~)%(~)ds ((~, q) ~ s) (2.1) u (x, y) = ~ ,  (s) r ( z - -  ~)~ + (~ - -  q)~ 
$ 

satisfies (1.3) if (x, y) does not belong to s, and during traversal of the line of integra- 
tion, s undergoes a jump, equal to 2~(x, g)/~T (nl, n 2 are the components of the normal along 
the x and y axes). Therefore it is natural to seek the solution u(x, y) in the form of 
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potential (2.1), whose density ~ is distributed along the crack line. We obtain the equation 
determining ~ if we substitute (2.1) into (1.7), assuming that the point (x, y) lies outside 
the crack, and then taking the limit as (x, y) tends toward the crack. According to Liapunov's 
theorem [2], the result does not depend on the side from which (x, y) approaches the crack. 
To ensure the validity of these assertions, it is sufficient to require that the density 
and the direction cosines of the normal to the crack satisfy Holder's condition. To solve 
the problem, the crack line is approximated by a broken line, the ends of whose segments lie 
on the crack. The unknown density T is approximated by a continuous piecewise linear func- 
tion. The unknowns are the values of the density ~i at the center of the i-th segment. Dis- 
cretization of (1.7) leads to a linear system of equations for ~i. The left-hand side of 
(1.7) (the derivative along the co-normal) is transformed into a finite sum of integrals of 
the form (2.1) along the broken line segments. In assembling the equation for the i-th 
segment, it is permissible to differentiate inside the integral in all intervals except the 
i-th interval. After differentiation, the value of the density is taken outside the integral 
over the broken line segment, and the remaining integrand is integrated analytically over 
this segment. As a result, the off-diagonal terms in the system of equations are obtained. 
After differentiating, the denominator in the integrand for the i-th interval has a second- 
order zero, which causes the integral to diverge. Therefore it is necessary to first compute 
the integral assuming that the point (x, y) lies on the perpendicular to the midpoint of the 
i-th segment, then take the derivative along the co-normal (1.7), and then take the limit of 
the resultant expression to the midpoint of the segment. This gives the diagonal term of the 
matrix of the linear system, which coincides with the finite part of the diverging integral 
in the sense of Hadamard [3]. The matrix elements obtained are quite cumbersome and will not 
be given here. However, for a straight-line crack, the expressions are simpler. We write 
out the system for a horizontal crack of length 24, y = 0, --~ < x < 4. We divide the crack 
into (2N + I) sections of identical length As. Then we have 

( 2 . 2 )  
t ~ 4 (Oj o- 

TAs  4 (i - -  7)~ - -  1 E "  

The solution to system (2.2) was given in [i] (formula (3.4)). 
of the upper margin of the j-th segment of the crack as 

We write the displacement 

I o F ( ~ - - ] 4 - 3 1 2 )  F ( - ~ # i §  

uJ -- - ~  q"~ = E ~ ( ~ - / + . I )  r ( f  + . :  + I) 
A.V7 

(F is the gamma function). Using the Wallis formula (see [4]) 

lirn V ~ +  I/2 F(1~'~ l /2 ) /F(k  4- I) = 1 

and the reduction formulae for the gamma function, we find 

,J-~ r" ~ V - 7  V~(Y + i/2) ~ - . i 2 fo r  ~--~ ~ .  

As N § ~, As + 0 under the conditions AsN = 4, Asj = x, we obtain the known solution for a 
straight-line slit: 

V 7  V l: x~. u (x) = ~ 
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TABLE 1 

Segment 
numbe~ 

Exact 
solution 

0.348 
0,582 
0,726 
0,827 
0,899 
0,949 
0,982 
0,998 

Numerical 
solution 

0,439 
0,638 
0,770 
0,865 
0.935 
0,983 
t .014 
1,029 

Table 1 compares exact and approximate values of uE/os for points on the crack margin 
with a division of the line of integration into 16 segments. (Because of the symmetric dis- 
tribution of points with respect to the crack center, Table 1 gives the first 8 values for 
the displacement.) This example illustrates the convergence of the solution to the algebraic 
system and that of the integral equation. 

3. Having solved the problem in the continuum formulation, we turn to a solution with 
structure taken into account. To do this, we select a rectangular region around the crack 
tip (Fig. 2) whose boundary is sufficiently far from the crack tip, so that the stress state 
on the boundary is determined with reasonable accuracy by the solution to the integral equa- 
tion. After doing this, we solve (I.I) with boundary conditions on the boundaries of the 
selected region. The crack is then considered as a co!iection of fractures in fibers and 
delaminations of the binder. In [5] the solution of such a problem was reduced to an integro- 
algebraic system, the kernel and matrix of which were constructed taking into account the 
interaction of the elementary defects of the composite structure (fracture of the fibers and 
delamination). Here we will use a modification of this system, which accounts for the pre- 
sence of tangential stresses at the vertical boundaries of the selected region, which are 
assumed to be delaminations of the binder in the unbounded composite. Considering the condi- 
tions at the boundaries of the selected region, we obtain, in accordance with [5], the displa- 
cement of the j-th fiber 

N "q2~n 

": ('1) = Z of ~% (u, ~, h,,1 @ >  (z) & + 
m = l  f i lm 

L ~ ~ t t  

+ Y,,~J: 01, ~,<, :,) + X [ T~.,, (~) :,': (q..r. ],,) d,- + 
h ~ l  ~Z=l ~ln 

M 

+ Y~ (s,lv~ (~, n,~,/,:) + s:_v: (,1. u,:.,., h)). 
V ~ l  

The integration interval [~im, T]2m] corresponds to the limits of the m-th delamination of 
the binder; 

M 
c~(~,~, j~) <-d +~m+' y~g,,~inm:~:~ (.<. -i/21, ,v8 [%7Y-/sin (:~g ) exp <- 2~)'~ I q-'d) 

h=l 

(gh = I (k = t . . . . .  M - -  t ) ,  g~I = 1/2. ).h = cos (a/~',/2M,)) 

are the functions from [5] which describe the delamination of the binder; M is the total 
number of fibers; N the number of delaminations; L is the number of fractures; 6Ujm = Ujm+1 - 

Ujm; 

M 

k = l  
a k )  exp ( - -  2 ~ k  Ill - -  qm[) 

(/,. t / 2 )  i 

sin M 

are the functions from [IJ which describe the fracture of the fibers. The limits of change 
for the ordinate [Nln, Dzn] determine the vertical dimension of the region being considered. 
The kernel 
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Kj (~, T, in) = ~I S exp(-2~lsin(s/2)ll-exp(-is(/-/a))exp(-2~lN-~Ilsin(s/2)l)l s i n  ( s / z )  1 

is the lumped-force solution to the problem in an infinite medium [6]. The unknowns of the 
system are 6Ujm, Ok, Sy1 , and Sy2; the latter two are the strength of the dipole shift at the 
crack and at the horizontal boundaries during delamination. The system was solved on a com- 
puter, and then stresses were computed according to (1.2). 

4. Using the described algorithm, the stability of a crack in a composite during the 
application of uniform tension at infinity was studied. It is known that, depending on the 
properties of the composite, a crack perpendicular to the fibers can either develop as a 
normal-failure crack (in which case growth is unstable), or it can give rise to a shear crack 
(which grows stably) [I]. Therefore it is of interest to study these possibilities for arbi -, 
trary crack orientation and to find the parameters of the composite structure which are con- 
ducive to delamination of the binder at the crack tip. To do this, let us consider a 
straight-line crack of length 2s = 2.2, 3.52, 4.92, which forms with angle ~ to the hori- 
zontal (tan ~ = 0, 0.5, 2). The fracture of a fiber takes place when the condition ol/o* = 1 
is met (a i is the maximum stress in the fibers, a* the fracture strength of the fibers). 
Delamlnatlon sets in when Tj/T = 1 (Tj, T" are the analogous tangential stress values). The 
quantities o~, T~ grow proportionally to the loading parameter a; therefore the type of fail- 
ure is determine~ by the ratio aj~/~ja . If this ratio is greater than I, then fracture 

will set in first; if less than i, delamination starts first. The ratio oj/Tj is found from 
the solution to the problem. For ~ = 0 it is given in [i], which makes it possible to pick 
out those parameters of the composite which separate the region of fiber fracture from that 
of delamination. In this paper, this ratio was determined numerically. Analysis shows that 

it depends on the parameters 62 = D/E, h/H, s ~ . Thus in combination with the param- 
eter T*/a *, we have a five-dimensional space, each of whose points determines the mode of 
failure. Since the study of a five-dimensional space is too cumbersome, let us fix the param- 
eters 82 and h/H by taking values for the elastic constants from [7] and setting h/H = 0.5. 
Taking small variations of these parameters shows that the results depend very weakly on them. 
In the resultant three-dimensional space Z//HL, ~ , T*/a ~, we seek a surface separating the 

region of fracture from that of delamination. To this end, a series of problems was solved 
with 2s = 2.2; 3.52; 4.92; tan~= 0; 0.5; 2. The tensile stress a was taken as equal to 
i, since the results do not depend on this parameter. When determining the ratio oj/Tj, the 

solution of the entire problem was used, i.e., the field of the uniform extension was added 
to the solution to the supplemental problem. The resultant surface is depicted in Fig. 3, 
and the points at which it is constructed are given in Table 2. The area lying above the 
surface corresponds to failure by fiber fracture; those below it to delamination of the binder. 
If the growth of a normal-failure crack takes place at small angles ~ (i.e., the crack is 
nearly perpendicular to the fibers), then it grows without hindrance. But if the crack is 
sufficiently inclined to the fibers, then as it grows, it intersects the surface in Fig. 3 
that separates the two failure modes, and fracture is replaced by stable delamination. 
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TABLE 2 TABLE 3 

I/g-N~ I z / V~K-h 2,2 t 3,52 4,~2 2,~ I ~,~2 I ~ , ~  
tan ~ tall 

. , Probability of 
Th/% I delamination 

0 0.0240 0,0244 0,0249 0 5o 60 60 
0,5 (L0259 0.0267 0,0278 0.5 ~(~ 60 80 
2 o,0331 010473 0,1190 2 80 lt)O 8(1 

120 

5. In constructing Fig. 3, only the direction of stratification at the first instant of 
failure was examined, and subsequent crack development was not taken into account. This was 
done on the basis of plausibility arguments. In addition to this approach, it is possible to 
seek results on the basis of random variations in component strength. Below is described 
numerical experiments which make it possible to consider crack development in a composite 
with random strength. Let us assume that the strength is not constant, but is uniformly dis- 
tributed about some mean value with a 5% spread. This case is modelled in the following way. 
Sweeping the entire computational region in the composite with a constant step-size of 0.!, 
we assign the strength at the nodes of the resultant mesh according to 0*(0.95 + 0.1a), ~"" 
(0.95 + 0.1b) (a, b are random numbers uniformly distributed over the interval (0.i) by a 
random-number generator on a computer). When determining the failure mode, just such local 
values for the strength were used. Then the points in Fig. 3 uniquely determine the failure 
mode only if they are sufficiently far from the surface separating the regions. Near this 
surface, the failure mode is determined only to some degree of probability, since the point 
can switch from one side of the surface to the other, due to random fluctuations. Since the 
relative scatter in the strength is small (• the strength ratio is nearly syrametric with 
respect to T*/o*. Therefore it would seem that delamination and normal failure are equally 
probable. However, calculations indicate the predominance of delamination, especially in the 
region of large angles and lengths. The results are given in Table 3. The probabilities 
were computed for i0 experiments, for which the extent of crack motion was five fibers. With 
every advance of the crack, the change in problem geometry was taken into account and the 
stress state recomputed. Figure 4 shows typical possibilities for crack growth. 

The predominance of delamination can be explained as follows. The first failure event 
can with equal probability be either fracture or delamination. Subsequently however, this 
symmetry is broken. The onset of delamination very sharply lowers the normal-stress concen- 
trations in the fibers, and makes subsequent fracture unlikely. But if fiber fracture occurs, 
it does not hinder the occurrence of delamination at the next step, due to the random varia- 
tion in strength. In addition, due to crack growth, it is possible to transfer the mapped 
points through the interface into the delamination region; as a consequence of this, sub- 
sequent fracture becomes less probable. 

Thus, scatter in the strength properties of the composite elements makes crack stabiliza- 
tion possible, thereby increasing the load-bearing capacity of manufactured materials. 
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